
1

1

Servlet BasicsServlet Basics

In this session, I will talk about basic concepts of a Servlet. And during
the next class, we will talk about more advanced topics of a Servlet.

03/17/2006

2

2

Disclaimer & Acknowledgments
? Even though Sang Shin is a full-time employee of Sun

Microsystems, the contents here are created as his own
personal endeavor and thus does not reflect any official
stance of Sun Microsystems.

? Sun Microsystems is not responsible for any inaccuracies
in the contents.

? Acknowledgements
– The slides and example code of this presentation are from

“Servlet” section of Java WSDP tutorial written by Stephanie
Bodoff of Sun Microsystems

– Some slides are borrowed from “Sevlet” codecamp material
authored by Doris Chen of Sun Microsystems

– Some example codes are borrowed from “Core Servlets and
JavaServer Pages” book written by Marty Hall

03/17/2006

3

3

Revision History
? 12/24/2002: version 1 (without speaker notes) by Sang Shin
? 01/04/2003: version 2 (with partially done speaker notes) by Sang Shin
? 01/13/2003: version 3 (screen shots of installing, configuring, running

BookStore1 are added) by Sang Shin
? 04/22/2003: version 4:

– Original Servlet presentation is divided into “Servlet Basics” and
“Servlet Advanced”

– speaker notes are added for the slides that did not have them,
editing and typo checking are done via spellchecker (Sang Shin)

03/17/2006

4

4

Topics

? Servlet in big picture of J2EE
? Servlet request & response model
? Servlet life cycle
? Servlet scope objects
? Servlet request
? Servlet response: Status, Header, Body
? Error Handling

So what are we going to talk about in this session? First, we will take a look at Servlet
from the standpoint of J2EE architecture, that is, what role Servlet plays in a multi-tier
web-based application. We will also compare Servlet against JSP.

Next we will take a look at the “request and response” model of Servlet. Servlet is
basically a web technology in which HTTP request is being received and handled and
then proper HTTP response is being created and then returned to the client.

Then we will look into Servlet life-cycle, that is, how an instance of Servlet gets created
to serve incoming HTTP requests. We will then look into so called “scope objects”
which are system objects that can be used to store system and application specific
information.

We will then take a look into the internal structure of the servlet request and servlet
response, especially HTTP request and HTTP response. We will then take a look at
how error handling is done.

The advanced servlet topics such as session tracking and servlet filtering will be dealt
with in advanced servlet session later on.

03/17/2006

5

5

Advanced Topics:

? Session Tracking
? Servlet Filters
? Servlet life-cycle events
? Including, forwarding to, and redirecting to

other web resources
? Concurrency Issues
? Invoker Servlet

These are advanced topics which will be dealt with in advanced servlet session.

03/17/2006

6

6

Servlet in aServlet in a
Big Picture of J2EEBig Picture of J2EE

Now let's take a look at where Servlet fits in in the big picture of J2EE.

03/17/2006

7

7

J2EE 1.2 Architecture

Java Servlet A Java program that
extends the functionality of a Web
server, generating dynamic content
and interacting with Web clients
using a request-response
paradigm.

An extensible Web technology that uses template data,
custom elements, scripting languages, and server-side
Java objects to return dynamic content to a client.
Typically the template data is HTML or XML elements.
The client is often a Web browser.

An extensible Web technology that uses template data,
custom elements, scripting languages, and server-side
Java objects to return dynamic content to a client.
Typically the template data is HTML or XML elements.
The client is often a Web browser.

This picture describes the roles that Servlet and JSP play in the J2EE architecture.
(Please read the text above.)

03/17/2006

8

8

Where are Servlet and JSP?

Web Tier EJB Tier

This is the same picture we've seen in the “J2EE overview” session. As you can
see, the Servlet and JSP are web tier components that are running within a web-tier
container. The role that web components play are basically (1) receiving client
requests that are coming in the form of HTTP requests and then (2) perform
dynamic contents generation or performing business logic by themselves or
delegating it to the EJB tier components, and then (3) return responses to the
clients.

03/17/2006

9

9

What is Servlet?

? Java™ objects which are based on servlet
framework and APIs and extend the
functionality of a HTTP server.

? Mapped to URLs and managed by
container with a simple architecture

? Available and running on all major
web servers and app servers

? Platform and server independent

So what is a Servlet? A technical description of Servlet is it is a Java object that is
based on Servlet framework and extends the functionality of a web server
basically being responsible for creating dynamic contents.

A Servlet is mapped to a corresponding URL and its life-cycle is managed by the
container. The URL is the address to which a client send HTTP request.

Servlet technology is available and running on all major web servers and app
servers.

Since it is based on Java, it is platform and server independent.

03/17/2006

10

10

First Servlet Code

Public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse
response){
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Hello World!</title>");
 }
 ...
}

So this is an example of very simple Servlet code. As you can see, a Servlet is a
Java code. Here a Servlet is named as HelloServlet and it extends a Java interface
called HttpServlet. Inside the code, there are a few predefined methods you want
to override, for example, here doGet() method gets called with HttpServletRequest
object and HttpServletResponse object as parameters. The HttpServletRequest is a
java object that is created by the container and captures an incoming HTTP
request in an object form.

Now in this example, the handling of the request is very simple - just send back
“Hello World!” message. That is, the browser, once it receives the HTTP response
message that contains the “Hello World” message, will display “Hello World!”
message on the screen as a result of accessing this Servlet.

03/17/2006

11

Servlet

CGI versus Servlet

l Written in C, C++, Visual
Basic and Perl

l Difficult to maintain,
non-scalable, non-
manageable

l Prone to security
problems of
programming language

l Resource intensive and
inefficient

l Platform and
application-specific

l Written in Java
l Powerful, reliable, and

efficient
l Improves scalability,

reusability (component
based)

l Leverages built-in security
of Java programming
language

l Platform independent and
portable

 CGI

(read the slide)

03/17/2006

12

12

Servlet vs. CGI

CGI
Based

Webserver

CGI
Based

Webserver

Request CGI1
Child for CGI1

CGI
Based

Webserver

Servlet Based Webserver

JVM

Request CGI1
Child for CGI1

Request Servlet1

CGI
Based

Webserver

Servlet Based Webserver

JVM
Servlet1

Request CGI1
Child for CGI1

Request CGI2

Request Servlet1

CGI
Based

Webserver
Child for CGI2

Servlet Based Webserver

JVM
Servlet1

Request CGI1
Child for CGI1

Request CGI2

Request Servlet1

Request Servlet2

CGI
Based

Webserver
Child for CGI2

Servlet Based Webserver

JVM
Servlet1

Servlet2

Request CGI1
Child for CGI1

Request CGI2

Request CGI1

Request Servlet1

Request Servlet2

CGI
Based

Webserver
Child for CGI2

Child for CGI1

Servlet Based Webserver

JVM
Servlet1

Servlet2

Request CGI1
Child for CGI1

Request CGI2

Request CGI1

Request Servlet1

Request Servlet2

Request Servlet1

CGI
Based

Webserver
Child for CGI2

Child for CGI1

Servlet Based Webserver

JVM
Servlet1

Servlet2

Request CGI1
Child for CGI1

This picture shows difference between CGI and servlet-based model. In CGI, for
every HTTP request, a new process has to be created while in servlet model, it is
the thread that gets created in the same Java VM (Virtual Machine) and that thread
can stay there for servicing other requests.

Also in CGI, every time a new request comes, the program image of CGI has to be
loaded in memory, which results in many redundant load of the same program. In
the case of Servlet, a single class is loaded for serving many requests. This results
in efficient memory usage.

03/17/2006

13

13

Advantages of Servlet

? No CGI limitations
? Abundant third-party tools and Web servers

supporting Servlet
? Access to entire family of Java APIs
? Reliable, better performance and scalability
? Platform and server independent
? Secure
? Most servers allow automatic reloading of

Servlet's by administrative action

So just to reiterate the advantages of Servlet, it does not have the limitations of CGI.
 There are abundant third-party tools and Web servers that support Servlet. Again
because Servlet is Java class, it can access all the Java APIs available. It provides
more reliable, better performing, and scalable web-tier technology. Because it is
based in Java technology, it is platform and server independent. It provides more
secure platform then CGI. Finally most servers allow automatic reloading of
servlets when they are modified.

03/17/2006

14

14

What is JSP Technology?

? Enables separation of business logic from
presentation

– Presentation is in the form of HTML or
XML/XSLT

– Business logic is implemented as Java Beans or
custom tags

– Better maintainability, reusability

? Extensible via custom tags
? Builds on Servlet technology

JSP, Java Server Pages, was introduced as a follow-on technology to the Servlet. Even though
the Servlet solves many problems associated with CGI for dynamic contents generation, it has
one downside. The downside is that, under Servlet, the presentation, typically HTML pages, has
to be generated as part of the servlet Java code, for example, using printf statement. What this
means is that whenever you have to make some change to the presentation, the Java code has to
be changed and then recompiled, redeployed. This in turn result in maintenance problem of your
applications. Also it makes web-page prototyping effort rather a difficult task.

JSP is designed to address of this shortcoming of the Servlet while maintaining all the benefits of
Servlet. That is, it provides a clear separation between the presentation and business logic code.
That is, the presentation will be designed by Web page designers in the form of either HTML or
XML or JSP page while the business logic will be implemented by Java programmers either in
the form of Java Beans or custom tags. This separation will result in a better maintainability of
both presentation pages and business code. And because the business logic is encapsulated into
Java beans or custom tags, it increased reusability of the code as well.

I mentioned about custom tags. Custom tags are basically specialized Java beans which
encapsulate the application-specific business logic. The functionality of enterprise applications
can be extended by building more custom tags.

Finally, JSP technology is built over servlet. In fact, JSP pages when deployed get converted
into servlet first. Because it is built over servlet, it maintains all the benefits of servlet. For
example, all the ready-to-use objects in a servlet such as session objects can be also available to
JSP page designers and custom tag developers.

03/17/2006

15

15

What is JSP page?

? A text-based document capable of
returning dynamic content to a client
browser

? Contains both static and dynamic
content

– Static content: HTML, XML
– Dynamic content: programming code, and

JavaBeans, custom tags

So by using JSP technology, you create JSP page. A JSP page is basically a text-
based document in which both static contents and logic for dynamic contents
generation are present. The static content is basically in the form of HTML or
XML while the dynamic contents generation can be done via embedded
programming code called scriplets or JavaBeans or custom tags. We will talk
about this in detail in the JSP session.

03/17/2006

16

16

JSP Sample Code

<html>
 Hello World!

<jsp:useBean id="clock"
 class=“calendar.JspCalendar” />
 Today is

Day of month: <%= clock.getDayOfMonth() %>
Year: <%= clock.getYear() %>

</html>

So this is a very simple JSP page. Here it contains various HTML tags as static
content and displays date and year as dynamic content by using JavaBeans.

03/17/2006

17

17

JSP

Servlets and JSP - Comparison

• HTML code in Java
• Any form of Data
• Not easy to author a

web page

• Java-like code in HTML
• Structured Text
• Very easy to author a

web page
• Code is compiled into a

servlet

Servlets

So this is a comparison of servlet and JSP. In servlet, HTML page is coded
in Java while in JSP it is the reverse, that is, the Java code can be inserted in
HTML like page. In servlet, any type of data can be handled while in JSP,
the type of data is mainly text data. In servlet, it is not really easy to author
the webpage while in JSP, it is really easy to author a webpage.

03/17/2006

18

18

JSP Benefits

? Content and display logic are separated
? Simplify development with JSP, JavaBeans

and custom tags
? Supports software reuse through the use of

components
? Recompile automatically when changes are

made to the source file
? Easier to author web pages
? Platform-independent

So the primary benefit of using JSP is that under JSP the content/business-logic
and display logic are separated. This separation simplifies the development of
Web application. As we will talk about in JSP session, the business logic is
captured in the form of Java Beans and custom tags, which can be reused.

Another benefit of using JSP over servlet is that JSP pages are automatically
compiled and deployed by the container whenever changes are made to them. So
it is just a matter of putting the newly changed JSP pages to the proper directory.

Of course, because JSP pages look very similar to HTML pages, it is a lot easier
for Web page designers to work with JSP pages instead of servlet. And just like
servlet, JSP technology is platform independent.

03/17/2006

19

19

When to use Servlet over JSP

? Extend the functionality of a Web server
such as supporting a new file format

? Generate objects that do not contain HTML
such as graphs or pie charts

? Avoid returning HTML directly from your
servlets whenever possible

So in most cases, you want to think about using JSP for Web
tier applications. But there are cases where you want to use
Servlet over JSP. (please read the slide)

03/17/2006

20

20

Should I Use Servlet or JSP?

? In practice, servlet and JSP are used
together

– via MVC (Model, View, Controller) architecture

– Servlet handles Controller
– JSP handles View

Now I hope I did not give you an impression that you have to
use either servlet or JSP. In practice, servlet and JSP are used
together levering the strength of each other. Servlet is good
for controlling functionality while JSP is good for handling
presentation logic. So they are used in what is called MVC
architecture in which servlet is used as a controller while JSP
is used for handling the view.

03/17/2006

21

21

Servlet Request &Servlet Request &
Response ModelResponse Model

Now let's talk about servlet request and response model.

03/17/2006

22

22

Servlet Request and Response
Model

Servlet

Response

Request

Browser
HTTP

WebWeb
ServerServer

Servlet Container

Response

Request

This picture shows “servlet request and response” model.

There are three different players in this picture: browser, web server, and servlet
container. In many cases, a web server and a servlet container are running in a
same machine even in a single virtual machine. So they are not really
distinguished in many cases. Anyway, the role of the web server is to receive
HTTP request and then passes it to the web container or servlet container which
then creates Java objects that represent “HTTP request” and a “session” and
then dispatches the request to the servlet by invoking service() method defined
in the servlet.

And once the servlet handles the request, it creates a HTTP response, which is
then sent to the client through the web server.

03/17/2006

23

23

What does Servlet Do?

? Receives client request (mostly in the form of
HTTP request)

? Extract some information from the request
? Do content generation or business logic process

(possibly by accessing database, invoking EJBs,
etc)

? Create and send response to client (mostly in the
form of HTTP response) or forward the request to
another servlet or JSP page

So this slide just repeats what I just said in the previous slides. A servlet container
receives client requests typically in the form of HTTP requests. A HTTP request
is then abstracted as Java object called HTTPServletRequest by the container,
which is then passed to a particular servlet. (By the way, the container knows
which servlet is to receive the request since the deployment descriptor, web.xml,
specifies which servlet is mapped to which URL and the client request should
contain the URL.)

The servlet then extracts any user-entered information from the HTTP request and
then performs some contents generation or business logic processing. And the
business logic processing might involve accessing database or invoking EJB
components in the EJB tier. Once contents generation and business logic
processing are done, then the servlet will create a HTTP response and send it back
to the client or it can forward the request to another servlet or JSP page.

03/17/2006

24

24

Requests and Responses

? What is a request?
– Information that is sent from client to a server

? Who made the request
? What user-entered data is sent
? Which HTTP headers are sent

? What is a response?
– Information that is sent to client from a server

? Text(html, plain) or binary(image) data
? HTTP headers, cookies, etc

So what are servlet request and servlet response? A request contains information
that is sent from the client to a web server while response contains information
that is sent from the server to the client. For example, the request contains
information such as (1) who made the request and (2) user-entered data and (3)
HTTP header entries.

And the response contains some static text such as HTML text or binary data such
as images and it also contains HTTP response header entries and cookies, which
are used to maintain session state.

03/17/2006

25

25

HTTP

? HTTP request contains
– header
– a method

? Get: Input form data is passed as part of URL
? Post: Input form data is passed within message body
? Put
? Header

– request data

.

03/17/2006

26

26

HTTP GET and POST
? The most common client requests

– HTTP GET & HTTP POST

? GET requests:
– User entered information is appended to the URL in a query

string
– Can only send limited amount of data

? .../servlet/ViewCourse?FirstName=Sang&LastName=Shin

? POST requests:
– User entered information is sent as data (not appended to

URL)
– Can send any amount of data

The most common form of client requests are HTTP GET and HTTP POST
requests.

In the HTTP GET request, the user entered information is appended to the URL as
a query string. One caveat of the HTTP GET request is that only limited amount
of data can be sent because of the limited space at the end of the URL.

In the HTTP POST request, on the other hand, the user entered information is sent
as data. And since it is sent as data, there is no limitation to the amount of data
you can send in using HTTP POST.

03/17/2006

27

27

First Servlet

 import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

Public class HelloServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>First Servlet</title>");
 out.println("<big>Hello Code Camp!</big>");
 }
}

So in this simple servlet program, the request comes in in the form of
HTTPServetRequest object and response is created in the form of
HttpServletResponse object. By the way, as was mentioned before, these
objects are created by the container.

03/17/2006

28

28

Interfaces & ClassesInterfaces & Classes

of Servletof Servlet

Now let's talk about Servlet interfaces and classes.

03/17/2006

29

29

Servlet Interfaces & Classes

Servlet

GenericServlet

HttpServlet

ServletRequest

HttpServletRequest

ServletResponse

HttpServletResponse

HttpSession

This picture shows important servlet interfaces and classes. The ones in yellow
color are Java interfaces while the ones in green color are Java classes.

When you create your own servlet, you either extend GenericServlet class or more
likely HTTPServlet class. In terms of request and response objects, the container
creates objects of HttpServletRequest and HttpServletResponse types for you and
pass them to service() method of the HTTPServlet class.

Another important class is HTTPSession class which contains session-wide state
information. And we will talk about these in rather detail later on.

03/17/2006

30

30

Servlet Life-CycleServlet Life-Cycle

Now let's talk about servlet life-cycle. Understanding servlet life cycle is
necessary for you in order to write well-functioning servlet code.

03/17/2006

31

31

Servlet Life-Cycle

Http
request

Http
response

Load Invoke
No

Yes

Client Server

Is Servlet Loaded?

Servlet Container

Run
Servlet

The life cycle of a servlet is controlled by servlet-container in which the
servlet has been deployed. When a HTTP request is mapped to a servlet,
the container performs the following steps.

 # If an instance of the servlet does not exist, the Web container
 # Loads the servlet class.
 # Creates an instance of the servlet class.
 # Initializes the servlet instance by calling the init() method .
 # Invokes the service method, passing HttpServletRequest and
HttpServletResponse objects as parameters.

03/17/2006

32

32

Servlet Life Cycle Methods

Ready

doGet() doPost()

service()

destroy()init()

Request parameters

Init parameters

The init() method gets called once when a servlet instance is created for the first
time. And then service() method gets called every time there comes a new
request. Now service() method in turn calls doGet() or doPost() methods for
incoming HTTP requests.

And finally when the servlet instance gets removed, the destroy() method gets
called. So init() and destroy() methods get called only once while service(),
doGet(), and doPost() methods are called a number of times depending on how
many HTTP requests are received.

03/17/2006

33

33

Servlet Life Cycle Methods

? Invoked by container
– Container controls life cycle of a servlet

? Defined in
– javax.servlet.GenericServlet class or

? init()
? destroy()
? service() - this is an abstract method

– javax.servlet.http.HttpServlet class
? doGet(), doPost(), doXxx()
? service() - implementation

Please note that it is the web-container that invokes these servlet life cycle
methods. In other words, it is the container who knows when to call these life
cycle methods. That is the reason why we say the life cycle of servlets are
controlled by the container.

Now the init(), destroy() and service() methods are defined in the
GenericServlet class. Please note that service() method is an abstract method
and GenericServlet class is thus abstract class. What this means is that the
service() method of the GenericServlet class has to be implemented by a
subclass. And the subclass is HTTPServlet class. So HTTPServlet class
implemented service() method and in its implementation. It also checks which
HTTP command it receives and then delegate the call to a corresponding
doXXX() calls, mostly to doGet() and doPost() methods.

03/17/2006

34

34

Servlet Life Cycle Methods

? init()
– Invoked once when the servlet is first instantiated
– Perform any set-up in this method

? Setting up a database connection

? destroy()
– Invoked before servlet instance is removed
– Perform any clean-up

? Closing a previously created database connection

Now let's talk about init() and destroy() methods one more time. As was
mentioned before, init() and destroy() methods are called only once, init() at the
time service instance is created while destroy() gets called at the time servlet
instance gets removed. And init() can be used to perform some set up operation
such as setting up a database connection and destroy() method is used to
perform any clean up, for example, removing a previously created database
connection.

03/17/2006

35

35

Example: init() from
CatalogServlet.java
public class CatalogServlet extends HttpServlet {
 private BookDB bookDB;

 // Perform any one-time operation for the servlet,
 // like getting database connection object.

 // Note: In this example, database connection object is assumed
 // to be created via other means (via life cycle event mechanism)
 // and saved in ServletContext object. This is to share a same
 // database connection object among multiple servlets.
 public void init() throws ServletException {
 bookDB = (BookDB)getServletContext().
 getAttribute("bookDB");
 if (bookDB == null) throw new
 UnavailableException("Couldn't get database.");
 }
 ...
}

This is an example servlet code that shows how init() method is used to perform
any one-time operations such as getting a database connection object.

This example is from the CatalogServlet.java code of Duke's bookstore web
application in Java WSDP. Here it is assumed that the database connection is
created through another means (via life cycle event mechanism) and saved in
ServletContext object before init() method of this servlet code is invoked. This
is to share a common database connection among multiple servlets instead of
each servlet creating its own database connection. So here in this code, it just
gets the reference to the database connection object.

03/17/2006

36

36

Example: init() reading
Configuration parameters
public void init(ServletConfig config) throws

ServletException {
 super.init(config);
 String driver = getInitParameter("driver");
 String fURL = getInitParameter("url");
 try {
 openDBConnection(driver, fURL);
 } catch (SQLException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException e){
 e.printStackTrace();
 }
}

In this example, you are actually setting up your own database connection by
reading init parameter values. The init parameter values are configured in the
web.xml deployment descriptor. Please don't get confused about init parameters
with user-entered parameters that come from the browser. The parameters that
come from the browser can be accessed via getParameter() method while init
parameters from the web.xml deployment descriptor file can be obtained via
getInitParameter() method.

03/17/2006

37

37

Setting Init Parameters in
web.xml
<web-app>
 <servlet>
 <servlet-name>chart</servlet-name>
 <servlet-class>ChartServlet</servlet-class>
 <init-param>
 <param-name>driver</param-name>
 <param-value>
 COM.cloudscape.core.RmiJdbcDriver
 </param-value>
 </init-param>

 <init-param>
 <param-name>url</param-name>
 <param-value>
 jdbc:cloudscape:rmi:CloudscapeDB
 </param-value>
 </init-param>
 </servlet>
</web-app>

So this is an example of web.xml deployment descriptor in which init
parameters are configured for the example code in the previous slide.

03/17/2006

38

38

Example: destory()

public class CatalogServlet extends HttpServlet {
 private BookDB bookDB;

 public void init() throws ServletException {
 bookDB = (BookDB)getServletContext().
 getAttribute("bookDB");
 if (bookDB == null) throw new
 UnavailableException("Couldn't get database.");
 }
 public void destroy() {
 bookDB = null;
 }
 ...
}

This is destroy example code again from CatalogServlet code. Here destroy()
method nulling the local variable that contains the reference to database
connection. (Again in this example, since a common database connection is
used by multiple servlets, you don't want to close the database connection.)

03/17/2006

39

39

Servlet Life Cycle Methods
? service() javax.servlet.GenericServlet class

– Abstract method

? service() in javax.servlet.http.HttpServlet class
– Concrete method (implementation)

– Dispatches to doGet(), doPost(), etc

– Do not override this method!

? doGet(), doPost(), doXxx() in in
javax.servlet.http.HttpServlet

– Handles HTTP GET, POST, etc. requests

– Override these methods in your servlet to provide
desired behavior

Now let's talk about service() and doGet(), doPost() methods. These are the
methods into which you put your business logic or dynamic contents generation
logic.

As was mentioned, the service() method is an abstract method in GenericServlet
class which is then implemented in a subclass. And HTTPServlet is a subclass
that is already provided for the developers. The service() method
implementation of the HTTPServlet class then dispatches the call to doXXX()
methods depending on the HTTP request type.

As a servlet developer, you want to override the doXXX() methods to
implement a desired behavior of your servlet.

03/17/2006

40

40

service() & doGet()/doPost()

? service() methods take generic requests
and responses:

– service(ServletRequest request,
 ServletResponse response)

? doGet() or doPost() take HTTP requests and
responses:

– doGet(HttpServletRequest request,
 HttpServletResponse response)
– doPost(HttpServletRequest request,
 HttpServletResponse response)

In this slide, the method signatures of service(), doGet() and doPost() methods are
shown. Basically they receive HttpServletRequest and HttpServletResponse
objects as input parameters.

03/17/2006

41

41

Service() Method

Request

Service()

Response

Server
GenericServlet

subclass

Key: Implemented by subclass

Subclass of
GenericServlet class

This picture shows how service() method of a subclass of GenericServlet class
is invoked.

03/17/2006

42

42

doGet() and doPost() Methods

Request

Service()

Response

Server HttpServlet subclass

Key: Implemented by subclass

 doGet()

 doPost()

As was mentioned, doGet() and doPost() methods of HTTPServlet class are
invoked from concrete implementation of service() method in the HTTPServlet
class.

03/17/2006

43

43

Things You Do in doGet() &
doPost()

? Extract client-sent information (HTTP parameter)
from HTTP request

? Set (Save) and get (read) attributes to/from Scope
objects

? Perform some business logic or access database
? Optionally forward the request to other Web

components (Servlet or JSP)
? Populate HTTP response message and send it to

client

So what are the things you want to do in doGet() and doPost() methods?
Several things.

First, you can extract client sent information such as user-entered parameter
values that were sent as query string.

Second, you can set and get attributes to and from scope objects.

Third, you perform some business logic or access the database.

Fourth, you can optionally include or forward your requests to other web
components.

Finally,you can populate HTTP response message and then send it to client.

03/17/2006

44

44

Example: Simple doGet()

 import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

Public class HelloServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {

 // Just send back a simple HTTP response
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>First Servlet</title>");
 out.println("<big>Hello J2EE Programmers! </big>");
 }
}

This is a very simple example code of doGet() method. In this example, a
simple HTTP response message is created and then sent back to client.

03/17/2006

45

45

Example: Sophisticated doGet()
public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Read session-scope attribute “message”
 HttpSession session = request.getSession(true);
 ResourceBundle messages = (ResourceBundle)session.getAttribute("messages");

 // Set headers and buffer size before accessing the Writer
 response.setContentType("text/html");
 response.setBufferSize(8192);
 PrintWriter out = response.getWriter();

 // Then write the response (Populate the header part of the response)
 out.println("<html>" +
 "<head><title>" + messages.getString("TitleBookDescription") +
 "</title></head>");

 // Get the dispatcher; it gets the banner to the user
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher("/banner");

 if (dispatcher != null)
 dispatcher.include(request, response);

And this is a bit more sophisticated example of the doGet() method. As you can
see, within doGet() method, you can (1) read values of attributes maintained in
the scope objects (we will talk about scope objects later on), (2) set the
properties of the Writer object such as buffer size, (3) write actual response via
Writer object,(4) get a Dispatcher object and include the output from another
web component.

03/17/2006

46

46

Example: Sophisticated doGet()
 // Get the identifier of the book to display (Get HTTP parameter)
 String bookId = request.getParameter("bookId");
 if (bookId != null) {

 // and the information about the book (Perform business logic)
 try {
 BookDetails bd = bookDB.getBookDetails(bookId);
 Currency c = (Currency)session.getAttribute("currency");
 if (c == null) {
 c = new Currency();
 c.setLocale(request.getLocale());
 session.setAttribute("currency", c);
 }
 c.setAmount(bd.getPrice());

 // Print out the information obtained
 out.println("...");
 } catch (BookNotFoundException ex) {
 response.resetBuffer();
 throw new ServletException(ex);
 }

 }
 out.println("</body></html>");
 out.close();
 }

This is a continuation of the previous slide.

Here in this part of the example code, you get the value of user entered
parameter value that is called “bookId”. Using the value of bookId parameter,
the example code then gets detailed information on the book such as price.
Finally the code creates HTTP response message that contains the just retrieved
information on the book.

03/17/2006

47

47

Steps of Populating HTTP
Response

? Fill Response headers
? Set some properties of the response

– Buffer size
? Get an output stream object from the

response
? Write body content to the output stream

So far, we have seen several example codes in which the HTTP response
message is created and then sent back to the client. So what are the typical
steps you follow when creating a HTTP response?

First you fill some HTTP response headers such as content type. Second, you
set some properties such as buffer size. Third, you get an output stream object
from the response object and then write body contents to the output stream.

03/17/2006

48

48

Example: Simple Response
 Public class HelloServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {

 // Fill response headers
 response.setContentType("text/html");
 // Set buffer size
 response.setBufferSize(8192);
 // Get an output stream object from the response
 PrintWriter out = response.getWriter();
 // Write body content to output stream
 out.println("<title>First Servlet</title>");
 out.println("<big>Hello J2EE Programmers! </big>");
 }
}

This is a simple servlet example code in which some properties of a
response object are set. First you set the content type as text/html and then
set the buffer size. Setting a buffer size means that the output stream will
buffer the data up to buffer size before sending it to client. And then
retrieve an output stream (PrintWriter object in this example) and then
write the body content to the output stream.

03/17/2006

49

49

Scope ObjectsScope Objects

We have seen some scope objects already such as Session object or
ServletContext objects. Now let's spend some time talking about these
scope objects because you will use scope objects in your servlet code to
maintain application or servlet wide state information.

03/17/2006

50

50

Scope Objects

? Enables sharing information among
collaborating web components via
attributes maintained in Scope objects

– Attributes are name/object pairs
? Attributes maintained in the Scope objects

are accessed with
– getAttribute() & setAttribute()

? 4 Scope objects are defined
– Web context, session, request, page

So what is a scope object? Scope objects enables sharing information
among collaborating web components, that is, servlets and JSP
components, via what is called attributes. And these attributes are
basically name/object pairs that are maintained in the scope objects.

And in your code, you get the value of an attribute via getAttribute()
method and set the value of an attribute via setAttribute() method.

Now in servlet architecture, there are 4 different types of scope objects
depending on the scope they cover.

03/17/2006

51

51

Four Scope Objects: Accessibility
? Web context (ServletConext)

– Accessible from Web components within a Web context

? Session
– Accessible from Web components handling a request that

belongs to the session

? Request
– Accessible from Web components handling the request

? Page
– Accessible from JSP page that creates the object

The four scopes objects are (1) web context scope object, (2)
session scope object, (3) request object, and (4) page object.

Each of these four scope objects have difference scope of
accessibility. For example, web context scope object has a scope
of web application, that is, a web context object is shared by all web
components within a single web application. And a session object
is shared by web components that share a same session. Request
object is shared by web components that handle the same request.
And page object is an object used within a JSP page.

03/17/2006

52

52

Four Scope Objects: Class
? Web context

– javax.servlet.ServletContext
? Session

– javax.servlet.http.HttpSession

? Request
– subtype of javax.servlet.ServletRequest:

javax.servlet.http.HttpServletRequest

? Page
– javax.servlet.jsp.PageContext

This slide lists the classes that represent these four scope
objects.

03/17/2006

53

53

Web Context
(ServletContext)

Now let's talk about each of the scope objects and see how they get used in
your servlet code. First, let's talk about web context scope object. By the way,
a web context object is represented by ServletContext object.

03/17/2006

54

54

What is ServletContext For?
? Used by servets to

– Set and get context-wide (application-wide) object-
valued attributes

– Get request dispatcher
? To forward to or include web component

– Access Web context-wide initialization parameters
set in the web.xml file

– Access Web resources associated with the Web
context

– Log
– Access other misc. information

So what is ServletContext object for? It is used by servlets to set and get
context-wide object-value attributes.

You can also get request dispatcher object from the ServletContext object. And
you use a request dispatcher object in order to forward a HTTP request to
another web component or include the output of another web component.

You can also access context-wide initialization parameters that were set in the
web.xml deployment descriptor. You can also access web resources associated
within the web context. You can also access logger object and other misc.
information.

03/17/2006

55

55

Scope of ServletContext

? Context-wide scope
– Shared by all servlets and JSP pages within a "web

"application
? Why it is called “web application scope”

– " "A web application is a collection of servlets and
content installed under a specific subset of the
server's URL namespace and possibly installed via a
*.war file

? All servlets in BookStore web application share same
ServletContext object

– There is one " ServletContext object per web
"application per Java Virtual Machine

So I mentioned “context-wide” scope several times already. What does that
mean? Context-wide scope is shared by all servlets and JSP pages within a
single Web application. This is why Context-wide scope is called web
application scope.

Now a Web application is a collection of multiple servlets and contents and
typically they all share a subset of the URL namespace. And they all belong to
a single *.WAR file. For example, all the servlets in the BookStore web
application in Java WSDP share the same ServletContext object.

Finally please note that there is one ServletContext object per a web application.

03/17/2006

56

56

ServletContext:
Web Application Scope

application

Client 1

Client 2

server

ServletContext

This picture shows relationship between multiple clients that access the same
Web application. The instances of servlet classes that belong to a single Web
application will share the same ServletContext object regardless of who the
client is.

03/17/2006

57

57

How to Access ServletContext
Object?

? Within your servlet code, call getServletContext
()

? Within your servlet filter code, call
getServletContext()

? The ServletContext is contained in ServletConfig
object, which the Web server provides to a
servlet when the servlet is initialized

– init (ServletConfig servletConfig) in Servlet interface

So how do you access ServletContext object? Within your servlet and servlet
filter code, you can call getServletContext() method.
Also if you have ServletConfig object, you can also retrieve the ServletContext
object from it.

03/17/2006

58

58

Example: Getting Attribute Value
from ServletContext

public class CatalogServlet extends HttpServlet {
 private BookDB bookDB;
 public void init() throws ServletException {
 // Get context-wide attribute value from
 // ServletContext object
 bookDB = (BookDB)getServletContext().
 getAttribute("bookDB");
 if (bookDB == null) throw new
 UnavailableException("Couldn't get database.");
 }
}

This is an servlet example code in which the value of a context-wide attribute
called bookDB is retrieved in init() method of the servlet class.

03/17/2006

59

59

Example: Getting and Using
RequestDispatcher Object
public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 HttpSession session = request.getSession(true);
 ResourceBundle messages = (ResourceBundle)session.getAttribute("messages");

 // set headers and buffer size before accessing the Writer
 response.setContentType("text/html");
 response.setBufferSize(8192);
 PrintWriter out = response.getWriter();

 // then write the response
 out.println("<html>" +
 "<head><title>" + messages.getString("TitleBookDescription") +
 "</title></head>");

 // Get the dispatcher; it gets the banner to the user
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher("/banner");

 if (dispatcher != null)
 dispatcher.include(request, response);
 ...

This is an example code of doGet() method in which RequestDispatcher object for another
web component is retrieved from ServletContext object. Once you have
RequestDispatcher object for another web component, you can dispatch (either forwarding
or including) the request to that web component using the dispatcher. Please note that
HTTP request and response are passed as parameters. A few more details are:

- /banner is servlet name of the BannerServlet.
- You will find BannerServlet.java under
<jwasp_install>/tutorial/examples/web/bookstore1/src
- web.xml file for bookstore1 application can be found under
<jwasp_install>/tutorial/examples/web/bookstore1/web/WEB-INF and it has a mapping
between servlet name and actual servlet class as following

 <servlet>
 <servlet-name>banner</servlet-name>
 <display-name>banner</display-name>
 <description>no description</description>
 <servlet-class>BannerServlet</servlet-class>
 </servlet>
-RequestDispatcher object is a wrapper for a particular
web resource such as servlet
-RequestDispatcher object can be obtained by calling
getRequestDispatcher(<servlet-name-to-forward-or-include>)
method of ServletContext.

03/17/2006

60

60

Example: Logging
public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 ...
 getServletContext().log(“Life is good!”);
 ...
 getServletContext().log(“Life is bad!”, someException);

This example code shows how to use log() method of the ServletContext object.
The name and type of the log file is container specific.

03/17/2006

61

61

SessionSession
(HttpSession)(HttpSession)

We will talk more on HTTPSessionWe will talk more on HTTPSession
later in “Session Tracking”later in “Session Tracking”

Now let's talk about Session scope object. Understanding Session scope object
is important since Session object is the most frequently used scope object in
your code.

03/17/2006

62

62

Why HttpSession?

? Need a mechanism to maintain client
state across a series of requests from a
same user (or originating from the same
browser) over some period of time

– Example: Online shopping cart
? Yet, HTTP is stateless
? HttpSession maintains client state

– Used by Servlets to set and get the values of
session scope attributes

So why do we need something like HTTPSession object?

First we need a mechanism to maintain client state information across a series of
HTTP requests from a same user over a period of time. And good example is
online shopping cart servlet. In online shopping cart servlet, the items a user
has put in his/her shopping cart has to be preserved. Yet, HTTP protocol is
stateless. HTTPSession object can maintain the client state in the form of
attributes and the attributes remain in session scope.

03/17/2006

63

63

How to Get HttpSession?

? via getSession() method of a Request
object (HttpRequest)

So how do you get HTTPSession object in your Servlet code? HTTPRequest
object that is passed to your servlet code as an input parameter of service() or
doXXX() methods has a method called getSession() method.

03/17/2006

64

64

Example: HttpSession

public class CashierServlet extends HttpServlet {
 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Get the user's session and shopping cart
 HttpSession session = request.getSession();
 ShoppingCart cart =
 (ShoppingCart)session.getAttribute("cart");
 ...
 // Determine the total price of the user's books
 double total = cart.getTotal();

This is an example servlet code in which getting HTTPSession object is
demonstrated.

03/17/2006

65

65

Servlet RequestServlet Request

(HttpServletRequest)(HttpServletRequest)

Now it is time to talk about the internal structure of client request,
specifically HTTP request, which is represented as HttpServletRequest
object. Please do remember it is the responsibility of the container to
create the HttpServletRequest object from the incoming HTTP request.

03/17/2006

66

66

What is Servlet Request?
? Contains data passed from client to servlet
? All servlet requests implement ServletRequest

interface which defines methods for accessing
– Client sent parameters
– Object-valued attributes
– Locales
– Client and server
– Input stream
– Protocol information
– Content type
– If request is made over secure channel (HTTPS)

So what is servlet request? A servlet request contains data passed from client
(HTTP browser) to a servlet.

All servlet requests implement ServletRequest interface, which contains
methods for access various information.

03/17/2006

67

67

Requests

Request Servlet 1

Servlet 2

Servlet 3Response

Web Server

data,
client, server, header
servlet itself

This picture shows a simplified view on how client request is received by a
chain of servlets and then a response message is returned to the client.

03/17/2006

68

68

Getting Client Sent Parameters

? A request can come with any number of
parameters

? Parameters are sent from HTML forms:
– GET: as a query string, appended to a URL

– POST: as encoded POST data, not appeared in the URL

? " "getParameter(paraName)
– Returns the value of paraName
– Returns null if no such parameter is present

– Works identically for GET and POST requests

How do you get parameters client sent parameters? (I sometimes call these
parameters as “user-entered” parameters as well.)

Please note that a request can come with any number of client sent parameters.
Now parameters are sent from client in two different forms: HTTP GET and
HTTP POST. When a parameter is sent via HTTP GET message, the name and
value pairs of the parameters are sent as appendix to the the URL. When it is
sent via HTTP POST message, the name and value pairs of the parameters are
sent as user data.

Now ServletRequest interface has getParameter() method which can be used in
your code to get the value of the parameter. This method works the same for
both HTTP GET and POST requests.

03/17/2006

69

69

A Sample FORM using GET

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Please Enter Your Information</H1>

<FORM ACTION="/sample/servlet/ThreeParams">
 First Name: <INPUT TYPE="TEXT" NAME="param1">

 Last Name: <INPUT TYPE="TEXT" NAME="param2">

 Class Name: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>

This is an example HTML page in which values of three parameters are
collected as From values and then transported to the servlet through HTTP GET
message. We will see actual HTML page in the following slide.

03/17/2006

70

70

A Sample FORM using GET

So this is the actual display of the previous HTML page.

03/17/2006

71

71

A FORM Based Servlet: Get
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
/** Simple servlet that reads three parameters from the html form */
public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Your Information";
 out.println("<HTML>" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "\n" +
 " First Name in Response: "
 + request.getParameter("param1") + "\n" +
 " Last Name in Response: "
 + request.getParameter("param2") + "\n" +
 " NickName in Response: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

This example code shows how to extract the values of the three parameters that
have been entered by an end-user.

03/17/2006

72

72

A Sample FORM using POST
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>A Sample FORM using POST</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1>
<FORM ACTION="/sample/servlet/ShowParameters" METHOD="POST">
 Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

 Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

 First Name: <INPUT TYPE="TEXT" NAME="firstName">

 <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

 Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 <CENTER>
 <INPUT TYPE="SUBMIT" VALUE="Submit Order">
 </CENTER>
</FORM>
</BODY>
</HTML>

This is the example HTML page in which values of input parameters are
collected as HTML Form values, which are then transported to the servlet as
HTTP POST message.

03/17/2006

73

73

 A Sample FORM using POST

This is display of the HTML page of the previous slide.

03/17/2006

74

74

A Form Based Servlet: POST
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ShowParameters extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 ...
 }
 public void doPost(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {

 doGet(request, response);

 }

}

This is doPost() example code.

03/17/2006

75

75

Who Set Object/value Attributes

? Request attributes can be set in two ways
– Servlet container itself might set attributes to make

available custom information about a request
? example: javax.servlet.request.X509Certificate attribute for

HTTPS

– Servlet set application-specific attribute
? void setAttribute(java.lang.String name, java.lang.Object o)
? Embedded into a request before a RequestDispatcher call

Now let's talk about who set the attributes? By the way, the attributes are set as
object/value pairs. There are two different ways that the attributes can be set.
First, there are certain set of attributes that are set by the container, for example,
X509Certificate attribute is set by the container when the container receives
HTTPS request. Second, your servlet code can set the custom attributes.

03/17/2006

76

76

Getting Locale Information
public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 HttpSession session = request.getSession();
 ResourceBundle messages =
 (ResourceBundle)session.getAttribute

("messages");

 if (messages == null) {
 Locale locale=request.getLocale();
 messages = ResourceBundle.getBundle(
 "messages.BookstoreMessages", locale);
 session.setAttribute("messages", messages);
 }

This is an example code in which messages attribute is retrieved and set with
ResourceBundle object.

03/17/2006

77

77

Getting Client Information

? Servlet can get client information from
the request

– String request.getRemoteAddr()
? Get client's IP address

– String request.getRemoteHost()
? Get client's host name

In your servlet code, you can also retrieve client specific information such as
client IP address or hostname.

03/17/2006

78

78

Getting Server Information

? Servlet can get server's information:
– String request.getServerName()

? " "e.g. www.sun.com

– int request.getServerPort()
? " "e.g. Port number 8080

In your servlet code, you can also retrieve server specific information such as
server's DNS-based hostname and port number.

03/17/2006

79

79

Getting Misc. Information

? Input stream
– ServletInputStream getInputStream()
– java.io.BufferedReader getReader()

? Protocol
– java.lang.String getProtocol()

? Content type
– java.lang.String getContentType()

? Is secure or not (if it is HTTPS or not)
– boolean isSecure()

In your servlet code, other misc. information can be also retrieved. Examples
are input stream object, protocol, content type, and security information.

03/17/2006

80

80

HTTPServletRequestHTTPServletRequest

Now let's talk about HTTPServletRequest.

03/17/2006

81

81

What is HTTP Servlet Request?
? Contains data passed from HTTP client to HTTP servlet
? Created by servlet container and passed to servlet as a

parameter of doGet() or doPost() methods
? HttpServletRequest is an extension of ServletRequest and

provides additional methods for accessing
– HTTP request URL

? Context, servlet, path, query information

– Misc. HTTP Request header information

– Authentication type & User security information

– Cookies
– Session

What is HTTP Servlet Request? It contains data passed from HTTP client to HTTP
servlet.

The HTTP Servlet request is represented by HTTPServletRequest object which is
created by the container and then passed to the servlet as a parameter of doGet() or
doPost() methods.

HTTPServletRequest type is an extension of ServletRequest Java interface type and
provides the additional methods for accessing the information mentioned above, for
example, HTTP request URL, HTTP header entries, authentication and user
security information, and session information, and so on.

03/17/2006

82

82

HTTP Request URL
? Contains the following parts

– http://[host]:[port]/[request path]?[query string]

Now let's talk about HTTP request URL first. HTTP request URL information
is passed as part of HTTP request. And the URL is made of hostname, port
number, request path and query string. Now let's talk about them in a bit more
detail.

03/17/2006

83

83

HTTP Request URL: [request path]

? http://[host]:[port]/[request path]?[query string]
? [request path] is made of

– Context: /<context of web app>
– Servlet name: /<component alias>

– Path information: the rest of it

? Examples
– http://localhost:8080/hello1/greeting

– http://localhost:8080/hello1/greeting.jsp

– http://daydreamer/catalog/lawn/index.html

Now let's talk about request path first. The request path is made of three things:
context path, servlet path, and path information.

The context is the context of the web application that is defined by the deployer
of the web application. As we talked about in the web application architecture
presentation, every web application has a corresponding context. For those of
you who forgot what a context is, it is basically a given name to a root directory
of your web application. The servlet name is the alias of your web component,
which is again defined in the web.xml deployment descriptor.

The path information is the rest of the URL. So examples for the hello1 web
application, a user will either specify http://localhost:8080/hello1/greeting for
servlet or http://localhost:8080/hello1/greeting.jsp for JSP page. In these cases,
the /hello1 is the context and /greeting or /greeting.jsp are servlet path. And
since there is nothing after that, the path information is null.

Now one thing you need to remember is that the request path to servlet/JSP alias
mapping is specified in the web.xml file. This is how web container knows
which servlet to pass the HTTP request to.

03/17/2006

84

84

HTTP Request URL: [query string]
? http://[host]:[port]/[request path]?[query string]
? [query string] are composed of a set of parameters and

values that are user entered
? Two ways query strings are generated

– A query string can explicitly appear in a web page
? " "Add To Cart
? " "String bookId = request.getParameter(Add);

– A query string is appended to a URL when a form with a
GET HTTP method is submitted

? http://localhost/hello1/greeting?username=Monica+Clinton
? String userName=request.getParameter(“username”)

Now let's talk about the query string. The query string is composed of a set of
parameters and values. These parameters and values are basically user entered
data that are being passed from the browser to the servlet as an extension to the
URL right after ? mark.

And there are two different ways in which query strings are generated.

First, a query string can be explicitly set in a web page. So when a user opens a
web page or selects a component that has a HTTP reference and if that reference
contains parameter and value pair, that will generate a query string.

A more pervasive form in which query string is generated is a user entered some
data as HTML form value.

Now how do you get the values of these parameters? You use getParameter()
method of the HttpServletRequest object.

03/17/2006

85

85

Context, Path, Query, Parameter
Methods

? String getContextPath()
? String getQueryString()
? String getPathInfo()
? String getPathTranslated()

This is the list of methods that are provided as part of HttpServletRequest The
getContextPath() method is used to get context information. The
getQueryString() method is to get the query string. The getPathInfo() method is
used to get the path information. The getPathTranslated() method is to get the
path information in real path form.

03/17/2006

86

86

HTTP Request Headers

? HTTP requests include headers which provide
extra information about the request

? Example of HTTP 1.1 Request:
GET /search? keywords= servlets+ jsp HTTP/ 1.1
Accept: image/ gif, image/ jpg, */*
Accept-Encoding: gzip
Connection: Keep- Alive
Cookie: userID= id456578
Host: www.sun.com
Referer: http:/www.sun.com/codecamp.html
User-Agent: Mozilla/ 4.7 [en] (Win98; U)

How let's talk about HTTP request header structure. Every HTTP request has a
header structure which is used to convey extra information about the request.

03/17/2006

87

87

HTTP Request Headers

? Accept
– Indicates MIME types browser can handle.

? Accept-Encoding
– Indicates encoding (e. g., gzip or compress) browser

can handle

? Authorization
– User identification for password- protected pages

– Instead of HTTP authorization, use HTML forms to
send username/password and store info in session
object

(read the slide)

03/17/2006

88

88

HTTP Request Headers
? Connection

– In HTTP 1.1, persistent connection is default

– Servlets should set Content-Length with
setContentLength (use ByteArrayOutputStream to
determine length of output) to support persistent
connections.

? Cookie
– Gives cookies sent to client by server sometime

earlier. Use getCookies, not getHeader

? Host
– Indicates host given in original URL.
– This is required in HTTP 1.1.

(read the slide)

03/17/2006

89

89

HTTP Request Headers
? If-Modified-Since

– Indicates client wants page only if it has been
changed after specified date.

– Don’t handle this situation directly; implement
getLastModified instead.

? Referer
– URL of referring Web page.
– Useful for tracking traffic; logged by many servers.

? User-Agent
– String identifying the browser making the request.
– Use with extreme caution!

(read the slide)

03/17/2006

90

90

HTTP Header Methods
? String getHeader(java.lang.String name)

– value of the specified request header as String
? java.util.Enumeration getHeaders(java.lang.String

name)

– values of the specified request header
? java.util.Enumeration getHeaderNames()

– names of request headers
? int getIntHeader(java.lang.String name)

– value of the specified request header as an int

These are set of HTTP header methods.

03/17/2006

91

91

Showing Request Headers
//Shows all the request headers sent on this particular request.
public class ShowRequestHeaders extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Servlet Example: Showing Request Headers";
 out.println("<HTML>" + ...
 "Request Method: " +
 request.getMethod() + "
\n" +
 "Request URI: " +
 request.getRequestURI() + "
\n" +
 "Request Protocol: " +
 request.getProtocol() + "

\n" +
 ...
 "<TH>Header Name<TH>Header Value");
 Enumeration headerNames = request.getHeaderNames();
 while(headerNames.hasMoreElements()) {
 String headerName = (String)headerNames.nextElement();
 out.println("<TR><TD>" + headerName);
 out.println(" <TD>" + request.getHeader(headerName));
 }
 ...
 }
}

This is an example servlet code retrieving HTTP header information and then
display them.

03/17/2006

92

92

Request Headers Sample

This is the output of the previous code.

03/17/2006

93

93

Authentication & User Security
Information Methods

? String getRemoteUser()

– name for the client user if the servlet has been
password protected, null otherwise

? String getAuthType()

– name of the authentication scheme used to protect
the servlet

? boolean isUserInRole(java.lang.String role)

– " "Is user is included in the specified logical role ?
? String getRemoteUser()

– login of the user making this request, if the user
has been authenticated, null otherwise

This slide has a set of methods that are related to authentication and user
security information.

03/17/2006

94

94

Cookie Method (in
HTTPServletRequest)

? Cookie[] getCookies()
– an array containing all of the Cookie objects the

client sent with this request

getCookies() method returns an array of Cookie objects the client sent with the
HTTP request.

03/17/2006

95

95

Servlet ResponseServlet Response

(HttpServletResponse)(HttpServletResponse)

So far we talked about Servlet request in some detail. Now let's talk about
Servlet response.

03/17/2006

96

96

What is Servlet Response?
? Contains data passed from servlet to client
? All servlet responses implement ServletResponse

interface
– Retrieve an output stream
– Indicate content type
– Indicate whether to buffer output
– Set localization information

? HttpServletResponse extends ServletResponse
– HTTP response status code
– Cookies

Servlet response contains data that is supplied by the servlet or container.
All servlet responses implement ServletResponse Java interface, which contains
methods for retrieving an output stream, indicating content type, indicating
whether to buffer output or not, for setting localization information.

Now HttpServletResponse is Java interface that extends ServletResponse. The
HttpServletResponse interface contains methods for setting HTTP response
status code and cookies.

03/17/2006

97

97

Responses

Request Servlet 1

Servlet 2

Servlet 3Response

Web Server

Response Structure:
status code , headers
and body.

This picture shows the response message that is generated at the server. The
response message contains HTTP status code, headers, and body.

03/17/2006

98

98

Response Structure

Status Code

Response Headers

Response Body

This picture just shows one more time how a HTTP response message is made
of - it is made of status code, response headers, and response body.

03/17/2006

99

99

Status Code inStatus Code in
Http ResponseHttp Response

Now let's talk a little bit on status code in HTTP response message.

03/17/2006

100

100

HTTP Response Status Codes

? Why do we need HTTP response status code?
– Forward client to another page
– Indicates resource is missing
– Instruct browser to use cached copy

So how does HTTP response status code get used? First, it could be used as an
instruction to the browser to forward the client to another page. Second it could
be used to indicate resource is missing. Third, it could be used to instruct the
browser to use cached copy of data.

03/17/2006

101

101

Methods for Setting HTTP
Response Status Codes

? public void setStatus(int statusCode)
– Status codes are defined in HttpServletResponse
– Status codes are numeric fall into five general

categories:
? 100-199 Informational
? 200-299 Successful
? 300-399 Redirection
? 400-499 Incomplete
? 500-599 Server Error

– Default status code is 200 (OK)

You can use setStatus() method of HttpServletResponse class. The HTTP status
codes fall into five general categories mentioned above. (read the status code in
the slide) while the default status code is 200.

03/17/2006

102

102

Example of HTTP Response
Status

HTTP/ 1.1 200 OK
Content-Type: text/ html
<! DOCTYPE ...>
<HTML
...
</ HTML>

This is HTTP response example that contains the default OK status.

03/17/2006

103

103

Common Status Codes
? 200 (SC_OK)

– Success and document follows
– Default for servlets

? 204 (SC_No_CONTENT)
– Success but no response body

– Browser should keep displaying previous
document

? 301 (SC_MOVED_PERMANENTLY)
– The document moved permanently (indicated in

Location header)
– Browsers go to new location automatically

This slide and following slide show the common status code your servlet code
can set.

03/17/2006

104

104

Common Status Codes
? 302 (SC_MOVED_TEMPORARILY)

– " "Note the message is Found

– Requested document temporarily moved elsewhere
(indicated in Location header)

– Browsers go to new location automatically

– Servlets should use sendRedirect, not setStatus,
when setting this header

? 401 (SC_UNAUTHORIZED)

– Browser tried to access password- protected page
without proper Authorization header

? 404 (SC_NOT_FOUND)

– No such page

This is the list of common status code your servlet code can set. Please note
that status 401 indicates that a user tried to access password-protected page
without proper authentication header and status 404 is the result of accessing a
URL which is not present.

03/17/2006

105

105

Methods for Sending Error

? Error status codes (400-599) can be used
in sendError methods.

? public void sendError(int sc)
– The server may give the error special treatment

? public void sendError(int code, String
message)

– Wraps message inside small HTML document

Instead of using setStatus() method and then writing status message out to the
output stream, you can accomplish both with a single method called sendError
(). We will see an example code in the following slide.

03/17/2006

106

106

setStatus() & sendError()

 try {
 returnAFile(fileName, out)
 }
 catch (FileNotFoundException e)

{ response.setStatus(response.SC_NOT_FOUND);
 out.println("Response body");
 }

 has same effect as

 try {
 returnAFile(fileName, out)
 }
 catch (FileNotFoundException e)

{ response.sendError(response.SC_NOT_FOUND);
 }

This slide compares the usage of setStatus() method and sendError() method as
mentioned in the previous slide.

03/17/2006

107

107

Header inHeader in
Http ResponseHttp Response

Now let's take a look at the header structure of HTTP response.

03/17/2006

108

108

Why HTTP Response Headers?
? Give forwarding location
? Specify cookies
? Supply the page modification date
? Instruct the browser to reload the page after a

designated interval
? Give the file size so that persistent HTTP

connections can be used
? Designate the type of document being

generated
? Etc.

HTTP response header contains information that can be used for several things
mentioned in the slide. (Read the slide.)

03/17/2006

109

109

Methods for Setting Arbitrary
Response Headers

? public void setHeader(String headerName, String
headerValue)

– Sets an arbitrary header.
? public void setDateHeader(String name, long millisecs)

– Converts milliseconds since 1970 to a date string in GMT
format

? public void setIntHeader(String name, int headerValue)

– Prevents need to convert int to String before calling
setHeader

? addHeader, addDateHeader, addIntHeader
– Adds new occurrence of header instead of replacing.

03/17/2006

110

110

Methods for setting Common
Response Headers

? setContentType
– Sets the Content- Type header. Servlets almost

always use this.
? setContentLength

– Sets the Content- Length header. Used for persistent
HTTP connections.

? addCookie
– Adds a value to the Set- Cookie header.

? sendRedirect
– Sets the Location header and changes status code.

This is the list of method that are used for setting common response headers.
(read the slide.)

03/17/2006

111

111

Common HTTP 1.1 Response
Headers
? Location

– Specifies a document's new location.
– Use sendRedirect instead of setting this

directly.
? Refresh

– Specifies a delay before the browser
automatically reloads a page.

? Set-Cookie
– The cookies that browser should remember.

Don’t set this header directly.
– use addCookie instead.

These are the common HTTP response header fields. (read the slide.)

03/17/2006

112

112

Common HTTP 1.1 Response
Headers (cont.)

? Cache-Control (1.1) and Pragma (1.0)
– A no-cache value prevents browsers from caching

page. Send both headers or check HTTP version.

? Content- Encoding
– The way document is encoded. Browser reverses

this encoding before handling document.

? Content- Length
– The number of bytes in the response. Used for

persistent HTTP connections.

This is the continuation of HTTP response header fields. (read the slide.)

03/17/2006

113

113

Common HTTP 1.1 Response
Headers (cont.)
? Content- Type

– The MIME type of the document being returned.
– Use setContentType to set this header.

? Last- Modified
– The time document was last changed
– Don’t set this header explicitly.
– provide a getLastModified method instead.

This is continuation of HTTP response header fields. (read the slide.)

03/17/2006

114

114

Refresh Sample Code

public class DateRefresh extends HttpServlet {
 public void doGet(HttpServletRequest req,

 HttpServletResponse res)
 throws ServletException, IOException {
 res.setContentType("text/plain");
 PrintWriter out = res.getWriter();
 res.setHeader("Refresh", "5");
 out.println(new Date().toString());
 }
}

This is an example code in which you can instruct browser to refresh the page
every 5 seconds.

03/17/2006

115

115

Body inBody in
Http ResponseHttp Response

We just looked into HTTP response header structure. Now let's take a look at
the HTTP response body structure.

03/17/2006

116

116

Writing a Response Body

? A servlet almost always returns a response
body

? Response body could either be a PrintWriter
or a ServletOutputStream

? PrintWriter
– Using response.getWriter()
– For character-based output

? ServletOutputStream
– Using response.getOutputStream()
– For binary (image) data

A response body could be the type pf either PrintWriter or
ServletOutputStream. The former object can be retrieved via getWriter() method
while the latter is obtained via getOutputStream() method. The difference
between the two is that the former is used for character based output while the
latter is used for sending out binary data.

03/17/2006

117

117

Handling ErrorsHandling Errors

Now let's talk about how we can handle errors in your servlet code.

03/17/2006

118

118

Handling Errors

? Web container generates default error page
? You can specify custom default page to be

displayed instead
? Steps to handle errors

– Create appropriate error html pages for error
conditions

– Modify the web.xml accordingly

Please note that web container generates a default error page unless you specify
a custom error page to be displayed.

The steps you take in order to set a custom error page is first (1) create
appropriate error page for error conditions (2) specify what error pages are to be
displayed for what error conditions in web.xml deployment descriptor.

03/17/2006

119

119

Example: Setting Error Pages in
web.xml
<error-page>
 <exception-type>
 exception.BookNotFoundException
 </exception-type>
 <location>/errorpage1.html</location>
</error-page>
<error-page>
 <exception-type>
 exception.BooksNotFoundException
 </exception-type>
 <location>/errorpage2.html</location>
</error-page>
<error-page>
 <exception-type>exception.OrderException</exception-type>
 <location>/errorpage3.html</location>
</error-page>

This is an example of web.xml deployment descriptor in which 3 error
conditions (Exceptions) are mapped into 3 custom error pages.

03/17/2006

120

120

 Resources

03/17/2006

121

121

Resources Used

? Java Web Services Developer Pack Download
– java.sun.com/webservices/downloads/webservicespack.html

? Java Web Services Developer Pack Tutorial
– java.sun.com/webservices/downloads/webservicestutorial.html

? Java Servlet 2.3 specification
– http://www.jcp.org/aboutJava/communityprocess/final/jsr053/i

ndex.html

? Core Servlets and JavaServer Pages (written by
Marty Hall)

– pdf.coreservlets.com/

03/17/2006

122

122

Passion!

03/17/2006

